Regular, Singular and Hypersingular Integrals over Fractal Contours

Author:

Boykov Ilya1ORCID,Roudnev Vladimir2ORCID,Boykova Alla2ORCID

Affiliation:

1. Department of Higher and Applied Mathematics, Penza State University, Krasnaya 40, 440026 Penza, Russia

2. Department of Computational Physics, Saint Petersburg State University, 1 Ulyanovskaya Str., 198504 Saint Petersburg, Russia

Abstract

The paper is devoted to the approximate calculation of Riemann definite integrals, singular and hypersingular integrals over closed and open non-rectifiable curves and fractals. The conditions of existence for the Riemann definite integrals over non-rectifiable curves and fractals are provided. We give a definition of a singular integral over non-rectifiable curves and fractals which generalizes the known one. We define hypersingular integrals over non-rectifiable curves and fractals. We construct quadratures for the calculation of Riemann definite integrals, singular and hypersingular integrals over non-rectifiable curves and fractals and the corresponding error estimates for various classes of functions. Singular and hypersingular integrals are defined up to an additive constant (or a combination of constants) that are subject to a convention that depends on the actual problem being solved. We illustrate our theoretical results with numerical examples for Riemann definite integrals, singular integrals and hypersingular integrals over fractals.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Gakhov, F.D. (1990). Boundary Value Problems, Dover Publication.

2. Analytical methods for solution of hypersingular integral equations;Boykov;Univ. Proc. Volga Reg. Phys. Math. Sci.,2017

3. Boykov, I.V., and Boykova, A.I. (2019). Analytical methods for solution of hypersingular and polyhypersingular integral equations. arXiv.

4. Lifanov, I.K. (1996). Singular Integral Equations and Discrete Vortices, VSP.

5. Boykov, I.V. (2004). Approximate Methods of Solution of Singular Integral Equations, Penza State University Publishing House.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3