Working Performance Improvement of a Novel Independent Metering Valve System by Using a Neural Network-Fractional Order-Proportional-Integral-Derivative Controller

Author:

Nguyen Thanh Ha1ORCID,Do Tri Cuong12ORCID,Phan Van Du3ORCID,Ahn Kyoung Kwan1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, University of Ulsan, 93 Deahak-ro, Nam-gu, Ulsan 44610, Republic of Korea

2. College of Technology and Design, University of Economics Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

3. School of Engineering and Technology, Vinh University, Vinh, Nghe An 43100, Vietnam

Abstract

In recent years, reducing the energy consumption in a hydraulic excavator has received deep attention in many studies. The implementation of the novel independent metering valve system (NIMV) has emerged as a promising solution in this regard. However, external factors such as noise, throttling loss, and leakage have negative influences on the tracking precision and energy saving in the NIMV system. In this paper, a novel control method, simple but effective, called a neural network-fractional order-proportional-integral-derivative controller is developed for the NIMV system. In detail, the fractional order-proportional-integral-derivative (FOPID) controller is used to improve the precision, stability, and fast response of the control system due to the inclusion of non-integer orders in the proportional, integral, and derivative terms. Along with that, the auto-tuning algorithm of the neural network controller is applied for adjusting five parameters in the FOPID controller under noise, throttling loss, and leakage. In addition, the proposed controller alleviates the amount of calculation for the system by using model-free control. To verify the effectiveness of the proposed controller, the simulation and experiment are conducted on the AMESim/MATLAB and a real test bench. As a result, the proposed controller not only operates the NIMV system accurately in the target trajectory but also reduces energy consumption, saving up 23.33% and 29.25% compared to FOPID and PID in the experimental platform, respectively.

Funder

Regional Innovation Strategy

University of Economics Ho Chi Minh City, Vietnam

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3