Approximate Closed-Form Solutions for a Class of 3D Dynamical Systems Involving a Hamilton–Poisson Part

Author:

Ene Remus-Daniel1ORCID,Pop Nicolina2ORCID

Affiliation:

1. Department of Mathematics, Politehnica University of Timisoara, 300006 Timisoara, Romania

2. Department of Physical Foundations of Engineering, Politehnica University of Timisoara, 300223 Timisoara, Romania

Abstract

The goal of this paper is to build some approximate closed-form solutions for a class of dynamical systems involving a Hamilton–Poisson part. The chaotic behaviors are neglected. These solutions are obtained by means of a new version of the optimal parametric iteration method (OPIM), namely, the modified optimal parametric iteration method (mOPIM). The effect of the physical parameters is investigated. The Hamilton–Poisson part of the dynamical systems is reduced to a second-order nonlinear differential equation, which is analytically solved by the mOPIM procedure. A comparison between the approximate analytical solution obtained with mOPIM, the analytical solution obtained with the iterative method, and the corresponding numerical solution is presented. The mOPIM technique has more advantages, such as the convergence control (in the sense that the residual functions are smaller than 1), the efficiency, the writing of the solutions in an effective form, and the nonexistence of small parameters. The accuracy of the analytical and corresponding numerical results is illustrated by graphical and tabular representations. The same procedure could be successfully applied to more dynamical systems.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3