Random Walks-Based Node Centralities to Attack Complex Networks

Author:

Turchetto Massimiliano12ORCID,Bellingeri Michele12ORCID,Alfieri Roberto12,Nguyen Ngoc-Kim-Khanh3,Nguyen Quang45,Cassi Davide12

Affiliation:

1. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, via G.P. Usberti, 7/a, 43124 Parma, Italy

2. INFN, Gruppo Collegato di Parma, 43124 Parma, Italy

3. Faculty of Basic Science, Van Lang University, Ho Chi Minh City 70000, Vietnam

4. Department of Physics, International University, Linh Trung, Thu Duc, Ho Chi Minh City 720400, Vietnam

5. Vietnam National University Ho Chi Minh City, Linh Trung, Thu Duc, Ho Chi Minh City 70000, Vietnam

Abstract

Investigating the network response to node removal and the efficacy of the node removal strategies is fundamental to network science. Different research studies have proposed many node centralities based on the network structure for ranking nodes to remove. The random walk (RW) on networks describes a stochastic process in which a walker travels among nodes. RW can be a model of transport, diffusion, and search on networks and is an essential tool for studying the importance of network nodes. In this manuscript, we propose four new measures of node centrality based on RW. Then, we compare the efficacy of the new RW node centralities for network dismantling with effective node removal strategies from the literature, namely betweenness, closeness, degree, and k-shell node removal, for synthetic and real-world networks. We evaluate the dismantling of the network by using the size of the largest connected component (LCC). We find that the degree nodes attack is the best strategy overall, and the new node removal strategies based on RW show the highest efficacy in regard to peculiar network topology. Specifically, RW strategy based on covering time emerges as the most effective strategy for a synthetic lattice network and a real-world road network. Our results may help researchers select the best node attack strategies in a specific network class and build more robust network structures.

Funder

Italian Ministry of Foreign Affairs and International Cooperation

National Recovery and Resilience Plan

Vietnam’s Ministry of Science and Technology

Vietnam National University Ho Chi Minh City

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3