An Exploration of Prediction Performance Based on Projection Pursuit Regression in Conjunction with Data Envelopment Analysis: A Comparison with Artificial Neural Networks and Support Vector Regression

Author:

Yu Xiaohong12ORCID,Lou Wengao3ORCID

Affiliation:

1. College of Humanities and Law, Shanghai Business School, Shanghai 200235, China

2. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. School of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

Abstract

Data envelopment analysis (DEA) is a leading approach in performance analysis and discovering newer benchmarks, and the traditional DEA models cannot forecast the future efficiency of decision-making units (DMUs). Machine learning, such as the artificial neural networks (ANNs), support vector machine/regression (SVM/SVR), projection pursuit regression (PPR), etc., have been viewed as beneficial for managers in predicting system behaviors. PPR is especially suitable for small and non-normal distribution samples, the usual cases in DEA analysis. This paper integrates DEA and PPR to cover the shortcomings we faced while using DEA and DEA-BPNN, DEA-SVR, etc. This study explores the advantages of combining these complementary methods into an integrated performance measurement and prediction model. Firstly, the DEA approach is used to evaluate and rank the efficiency of DMUs. Secondly, we establish two DEA-PPR combined models to describe the DEA efficiency scores (also called the production function) and the DEA-efficient frontier function. The first combined model’s input variables are input–output indicators in the DEA model, and the output variable is the DEA efficiency. In the second model, its input variables are input or output indicators in the DEA model, and the output variable is the optimal input indicator for input-oriented DEA or the output indicator for output-oriented DEA. We conducted positive research on two examples with actual data and virtual small, medium-sized, and large samples. Compared with the DEA-BPNN and DEA-SVR models, the results show that the DEA-PPR combined model has more vital global optimization ability, better convergence, higher accuracy, and a simple topology. The DEA-PPR model can obtain robust results for both small and large cases. The DEA-BPNN and DEA-SVR models cannot obtain robust results for small and medium-sized samples due to overfitting. For large samples, the DEA-PPR model outperforms DEA-BPNN, DEA-SVR, etc. The DEA-PPR combined model possesses better suitability, applicability, and reliability than the DEA-BPNN model, the DEA-SVR model, etc.

Funder

Shanghai Business School Plateau Discipline Project of Business Administration

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3