Robust Optimization for the Two-Dimensional Strip-Packing Problem with Variable-Sized Bins

Author:

Liu Kaiyuan1ORCID,Zhang Hongyu1,Wang Chong1ORCID,Li Hui2ORCID,Chen Yongquan2,Chen Qiong3

Affiliation:

1. Department of Logistics and Transportation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Shenzhen Institute of Artificial Intelligence and Robotics for Society, Chinese University of Hong Kong, Shenzhen 518172, China

3. Navigation College, Jimei University, Xiamen 361021, China

Abstract

The two-dimensional strip-packing problem (2D-SPP) emerges as a notable variant of the cutting and packing (C&P) problem, aiming to optimize the arrangement of small rectangular items within unique strips with a fixed width and infinite height to minimize the usage of height. Despite extensive academic exploration, applying 2D-SPP solutions in industrial settings remains challenging. Two significant issues, often overlooked in academia yet frequently encountered in industrial contexts, are the uncertain demand for items, exacerbated by the bullwhip effect, and the need for diverse types of strips to cater to varying customer needs. Our paper addresses this academia–industry gap by proposing a robust optimization model for the uncertain 2D-SPP with variable-sized bins, aiming to manage the demand fluctuations within a box uncertainty set framework. Additionally, we employ the contiguous one-dimensional relaxation technique in conjunction with column generation to tighten the lower bound of the problem, thereby augmenting solution accuracy. Furthermore, we leverage the Karush–Kuhn–Tucker (KKT) condition to transform the model into a more tractable form, subsequently leading to an exact solution. Based on datasets from a real-life plastic-cutting company, comprehensive experiments validate the effectiveness and efficiency of our proposed relaxation method and algorithm, showcasing the potential for an improved industrial application of 2D-SPP solutions.

Funder

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Shenzhen Institute of Artificial Intelligence and Robotics for Society

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3