1. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.A. (2013). Playing Atari with Deep Reinforcement Learning. arXiv.
2. Erickson, Z.M., Gangaram, V., Kapusta, A., Liu, C., and Kemp, C. (August, January 31). Assistive Gym: A Physics Simulation Framework for Assistive Robotics. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France.
3. Peng, X.B., Coumans, E., Zhang, T., Lee, T., Tan, J., and Levine, S. (2020). Learning Agile Robotic Locomotion Skills by Imitating Animals. arXiv.
4. Training effective deep reinforcement learning agents for real-time life-cycle production optimization;Zhang;J. Pet. Sci. Eng.,2022
5. A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning;Peng;Appl. Math. Comput.,2020