The Sub-Ice Algal Communities of the Barents Sea Pack Ice: Temporal and Spatial Distribution of Biomass and Species

Author:

Hegseth Else Nøst,von Quillfeldt Cecilie

Abstract

This work summarizes ice algal studies, presented as biomass and species temporal and spatial distribution, during 11 cruises conducted between 1986 and 2012. The majority of the biomass was found as loosely attached sub-ice algal layers, and sampling required diving. A maximum of 40 mg chlorophyll m−2 and 15.4 × 109 cells m−2 was measured in May. The species diversity was separated in zones based on ice thickness, with the highest biodiversity in the medium-thick ice of 30–80 cm. Nitzschia frigida was the most common species. There was a significant positive relationship between the dominance of this species and ice thickness, and it dominated completely in thick ice. Other common species, such as N. promare and Fossulaphycus arcticus reacted oppositely, by becoming less dominant in thick ice, but the positive correlation between total cell numbers and number of these three species indicated that they would most likely dominate in most populations. Melosira arctica was found several times below medium-thick annual ice. Algae occurred from top to bottom in the ice floes and in infiltration layers, but in very low numbers inside the ice. The bipolar dinoflagellates Polarella glacialis inhabited the ice, both as vegetative cells and cysts. The algal layers detached from the ice and sank in late spring when melting started. The cells in the sediments form an important food source for benthic animals throughout the year. Fjord populations survive the winter on the bottom and probably form next year’s ice algal inoculum. A few ‘over-summer’ populations found in sheltered locations might provide supplementary food for ice amphipods in late summer. The future faith of the ice flora is discussed in view of a warmer climate, with increased melting of the Arctic ice cover.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3