Abstract
During dredging for subsea tunnels and pipelines, the dredged soil is typically dumped in a designated area. Understanding the settling behaviors of the dumped particles is essential for an accurate prediction of the resulting morphology. This study dealt with the settling processes in the open-water column by means of experimental tests and numerical simulations. Both quiescent and ambient current conditions were taken into account. Particular attention was paid to the induced flow patterns, descent sediment movement features and the resulting topography. Regarding the diffusion width and settling velocity, three key effect factors, i.e., dumped volume, particle size and ambient flow strength, were considered. The results show that the dumped sediment in the water forms a particle cloud, and two vortices with opposite rotations occur on both sides of the cloud. During settlement, three stages corresponding to convective descent, dynamic collapse and passive diffusion are observed. Most of the descending sediment is incorporated in a spherical vortex, resembling an upside-down mushroom cloud, and some sediment is also contained in an irregular trailing stem. The dumped particles exhibit initial acceleration, and then they slow down to converge to a fixed value. Subjected to the ambient currents, the initial acceleration phase is prolonged, and the vortex is somewhat distorted; the particle cloud is also advected downstream with a velocity roughly equal to the ambient current.
Funder
China National Key Research and Development project
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference45 articles.
1. Monitoring the evolution of nearshore nourishments along Barra-Vagueira coastal stretch, Portugal
2. Coastal erosion and control
3. Comparison and analysis of comprehensive utilization of dredged materials at home and abroad;Fu;Port Waterw. Eng.,2011
4. Resource utilization of port dredged mud in beach reclamation engineering;Lu;Ocean. Technol.,2011
5. Controlling sand placement during the building of artificial islands
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献