A Mathematical Modeling Method for an Analytical Solution of Ship Hydrodynamic Pressure Fields in Complex Restricted Waters

Author:

Deng Hui,Zhang Zhihong,Yi WenbinORCID,Xia Weixue

Abstract

A ship advancing in restricted waters may cause a change in the surrounding velocity field, which in turn results in the hydrodynamic pressure field according to the variations in the ship speed. Accurate prediction of ship hydrodynamic pressure fields in restricted waters is therefore essential and important in the military and engineering fields. Based on the potential flow theory and the thin-ship assumption, dividing complex restricted waters with varying depths into the inner and outer domains with constant depths, a mathematical modeling method is developed and carried out for analyzing and solving the partial differential equations consisting of the governing equation with a dispersion effect, initial and boundary conditions, then the analytical solution of hydrodynamic pressure field caused by a ship advancing in complex restricted waters is obtained. The continuity of the analytical solution is confirmed and the correctness of the analytical solution is validated by simplifying to a simple water and comparing with available data. Moreover, the mathematical modeling method can be extended to study the hydrodynamic problems of ships in more complex waters.

Funder

National natural science foundations of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

1. Waterway Engineering;Jiang,2009

2. Effects of shallow waters effects on ships and empirical estimation methods;Zhang;Ship Mar. Eng.,2019

3. Status and development trend of foreign submarine mines;Ni;Mine Warfare Ship Protect.,2013

4. Shallow-water flows past slender bodies

5. Hydrodynamic Problems of Ships in Restricted Waters

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3