Numerical Simulation Study of a Swirling Drill Bit Used for Ice Core Drilling

Author:

Wang MengkeORCID,He Wenbo,Wang Minqi,Cao Jine,Cao Pinlu

Abstract

Due to its high mechanical penetration rate and lack of pollution of the environment, air reverse circulation drilling is considered to be a promising method for ice drilling. The air reverse circulation is caused by the combination of the ejector and the flushing nozzles in the drill bit. In this paper, CFD software was used to simulate the influence of the structure of the swirler on the effect of air reverse circulation in the swirling drill bit, and a testing stand was established for the testing of air reverse circulation. The results show that for drill bits without flushing nozzles, the smaller the helical angle is, the larger the entrainment ratio will be, meanwhile the smaller the area ratio is, the larger the entrainment ratio will be. In contrast, for drill bits designed with flushing nozzles, the larger the helical angle is, the larger the entrainment ratio will be, and the larger the area ratio is, the larger the entrainment ratio will be. In addition, the presence of the ice core sharply reduces the effect of air reverse circulation. When the ice core’s height exceeds that of the outlet of the swirler, the reverse circulation effect is slightly improved.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3