Analysis of Vibration Characteristics of Podded Propulsor Shafting Based on Analytical Method

Author:

Tian Yaqi,Zhang Cong,Yang Lei,Ouyang Wu,Zhou Xincong

Abstract

Podded propulsors are widely used in warships and cruise ships, which have a higher requirement of vibrational and acoustic design. Therefore, studying vibration characteristics and the transmission mechanism of podded propulsor shafting is significant for reducing vibration and ensuring the safe operation of ships. This paper establishes a model of podded propulsor shafting by analytical method. The shafting is simplified to a heterogeneous variable cross-section beam, while bearings are seen as springs. The podded propulsor shafting has one radial-thrust hybrid bearing and one radial bearing. The excitations from the propeller and cabin are considered. The influences of bearing stiffness, bearing location, and excitation on vibration characteristics of shafting are analyzed. The main conclusions are as follows: Based on the analysis of the area that resonance frequency is sensitive to the change of bearing stiffness, the resonance frequencies of the shafting can be adjusted to the proper range. The large span between hybrid bearing and radial bearing leads to low stiffness of shafting and low resonances frequencies. Under radial excitations, the low vibration always occurs at the hybrid bearing, motor shafting, or propeller end of shafting. This research provides theoretical support for the design and optimization of vibration reduction of podded propulsor shafting.

Funder

National Natural Science Foundation of China

High-tech Ship Project of the Ministry of Industry and Information Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Underwater Acoustics;Noise and Vibration Control on Ships;2024

2. Research on key process parameters and characteristic vibration of steam turbine shafting;Journal of Physics: Conference Series;2023-12-01

3. Developments in Marine Propulsors;Journal of Marine Science and Engineering;2023-10-07

4. Transverse Dynamic Responses and Optimization of a Flexibly Constrained Beam with Multiple Nonlinear Supports that Present Cubic Stiffness;International Journal of Structural Stability and Dynamics;2023-05-23

5. Transverse forced nonlinear vibration analysis of a double-beam system with a supporting nonlinearity;Journal of Vibration and Control;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3