Improvement of Rudder Cavitation Performance Using Rudder Inflow Measurements in Large Cavitation Tunnel

Author:

Paik Bu-Geun,Jeong So-Won,Park Young-Ha,Ahn Jong-Woo,Park IlryongORCID,Kim Jein

Abstract

One of the important things in a ship’s rudder design is the incidence angle of the rudder inflow to improve rudder cavitation performance. In the present study, the rudder inflow is measured by a 3-D LDV (laser Doppler velocimetry) system in a large cavitation tunnel, where the ship model tests are performed at a rather high Reynolds number of 107~108. Through the evaluation of the transverse velocity component using water injection experiments in the test section, the reliability of the 3-D LDV measurements is confirmed. The three-dimensional velocity components of rudder inflow between the rudder and propeller are successfully measured and are compared with numerical simulation results to see good agreement. The incidence angle distribution of the rudder inflow is obtained from the 3-D velocity components and shows a large angle at the range of 0.5 < Z/Span < 0.9, where the cavitation mainly occurred. The asymmetry-type rudder proposed based on rudder inflow measurements showed outstanding improvement of cavitation performance, compared with the flat-type rudder.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3