Numerical Prediction of Convective Heat Flux on the Flight Deck of Naval Vessel Subjected to a High-Speed Jet Flame from VTOL Aircraft

Author:

Jang Ho-Sang,Hwang Se-YunORCID,Lee Jang-HyunORCID

Abstract

This study examines the heat flux and convective heat transfer generated when a vertical take-off and landing (VTOL) aircraft takes off and lands on the flight deck of a naval vessel. A procedure for analyzing the convective heat transfer imposed on the deck by the high-temperature and high-velocity impingement of a VTOL jet is described. For the analysis, the jet velocity and the deck arrival temperature were calculated by applying computational fluid dynamics (CFD), assuming that the heat flow is an impingement jet. The relationships between the diameter of the jet, the speed of impingement, and the exhaust temperature of VTOL are introduced to assess the inlet condition. Heat flow was analyzed using CFD techniques, and Reynolds-averaged Navier–Stokes (RANS) and k-ε models were applied to model the turbulent motion. A procedure for evaluating the convection coefficient and convective heat flux from the calculated local velocity and temperature is presented. Simultaneously, a method for compensating the convection coefficient considering the singular velocity at the stagnation point is proposed. Furthermore, the accuracy was verified by comparing the convective heat flux and deck temperature predicted using CFD with the existing experimental studies. Finally, by applying finite element analysis (FEA) based on the thermal-structural interaction, the magnitude of thermal deformation due to conductive temperature and heat flux was presented as a design application of the flight deck.

Funder

Defense Industry Technology Center (DITC) of Korea

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Fluid Mechanics Methods and Applications in Marine Engineering;Journal of Marine Science and Engineering;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3