Holoplanktonic and Meroplanktonic Larvae in the Surface Waters of the Onnuri Vent Field in the Central Indian Ridge

Author:

Kim Minju,Kang Jung-HoonORCID,Kim Dongsung

Abstract

The dispersal of organisms in an isolated environment of a hydrothermal vent remains unclear. Here, we provide direct evidence that meroplanktonic larvae may migrate thousands of meters above the ocean floor. The morphological quantitative measurements of mesozooplankton were conducted in the Onnuri Vent Field (OVF), the Solitaire Fields (SF), and the reference site (ref-site). Only one species of bivalve larva that appeared at the OVF and the ref-site (0–200 m) was similar to Bathymodiolus spp. Sixteen species of gastropod larvae were distinguished, among which, species 1–4, 6, and 13 had holoplanktonic features (Atlanta, Oxygrus, and Limacina), whereas species 5, 7–12, and 14–16 had meroplanktonic features. Species 5, 11, and 12 appeared only at the OVF, 9 and 10 appeared only in the SF, 14–16 appeared only at the ref-site, and species 7 and 8 appeared in all surveyed stations. The species 5, 8, 12, 14, and 15 have morphological features similar to Vetulonia spp., and species 7 was similar to Lepetodrilidae; species 9–11 and 16 were similar to Phymorphynchus protoconchs. The morphologically distinguished mollusk larvae in the upper layers of the water column (0–200 m) indicate that larvae associated with deep-sea hydrothermal vents may disperse approximately 2000 m above the vents.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference51 articles.

1. Larval Development and Dispersal at Deep-Sea Hydrothermal Vents

2. Ontogenetic migration and dispersal of deep-sea gastropod larvae;Bouchet,1994

3. Early life histories of marine invertebrates and fishes;Keough,2007

4. A review of biophysical models of marine larval dispersal;Swearer,2019

5. Larval Dispersal: Vent Life in the Water Column

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3