Abstract
Biosurfactant has potential application value in the removal of microalgal blooms, but the ecological risks require more research. In this paper, the effects of surfactin on the toxic dinoflagellate Karlodinium veneficum were studied. The coaction of surfactin and K. veneficum was also evaluated through toxicological experiments on Artemia and juvenile clams. The results showed that: (1) in the concentration range of 0–10 mg/L, surfactin significantly killed algal cells in a dose-dependent manner within 48 h; the 24 h EC50 was 3.065 mg/L; (2) K. veneficum had the ability to restore population growth after stress reduction and the restored proliferation was positively correlated with the initial surfactin concentration; (3) the ability to restore population growth was associated with protection afforded by the promotion of antioxidant enzymes, including catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), whose increase was positively correlated with the surfactin concentration; (4) the toxicity of the coculture of surfactin and K. veneficum was significantly greater than that of the K. veneficum culture or surfactin alone and was dose and time dependent. The potential ecological risks should be considered when applying biosurfactants, such as surfactin, in the removal of harmful algal blooms.
Funder
the National Key Research and Development Program of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering