Snow Cover Detection Using Multi-Temporal Remotely Sensed Images of Fengyun-4A in Qinghai-Tibetan Plateau

Author:

Ma Guangyi1ORCID,Zhu Linglong2,Zhang Yonghong3ORCID,Lim Kam Sian Kenny Thiam Choy4ORCID,Feng Yixin5,Yu Tianming6

Affiliation:

1. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China

3. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi 214105, China

5. Anhui Meteorological Information Center, Hefei 230031, China

6. Tiantai Meteorological Bureau, Taizhou 317200, China

Abstract

Differentiating between snow and clouds presents a formidable challenge in the context of mapping snow cover over the Qinghai–Tibetan Plateau (QTP). The frequent presence of cloudy conditions severely complicates the discrimination of snow cover from satellite imagery. To accurately monitor the spatiotemporal evolution of snow cover, it is imperative to address these challenges and enhance the segmentation schemes employed for snow cover assessment. In this study, we devised a pixel-wise classification algorithm based on Support Vector Machine (SVM) called the 3-D Orientation Gradient algorithm (3-D OG), which captures the variations of the gradient direction of snow and clouds in spatiotemporal dimensions based on geostationary satellite “Fengyun-4A” (FY-4A) multi-spectral and multi-temporal optical imagery. This algorithm assumes that the speed and direction of clouds and snow are different in the process of movement leading to their discrepancy of gradient characteristics in time and space. Therefore, in this algorithm, the gradient of the images in the spatiotemporal dimensions is calculated first, and then the movement angle and trend are obtained based on that. Finally, the feature space is composed of the multi-spectral image, gradient image, and movement feature maps, which are used as the input of the SVM. Our results demonstrate that the proposed algorithm can identify snow and clouds more accurately during snowfall by utilizing the FY-4A’s high temporal resolution image. Weather station data, which was collected during snowstorms in the QTP, were used for evaluating the accuracy of our algorithm. It is demonstrated that the overall accuracy of snow cover segmentation by using the 3-D OG algorithm is improved by at least 12% and 10% as compared to snow products of Fengyun-2 and MODIS, respectively. Overall, the proposed algorithm has overcome the axial swing errors existing in Geostationary satellites and is successfully applied to cloud and snow segmentation in QTP. Furthermore, our study underscores that the visible and near-infrared bands of Fengyun-4A can be used for near real-time snow cover monitoring with high performance using the 3-D OG algorithm.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fengyun Application Pioneering Project (FY-APP) of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Wuxi University Research Start-up Fund for Introduced Talents

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3