Potential of Non-Contact Dynamic Response Measurements for Predicting Small Size or Hidden Damages in Highly Damped Structures

Author:

Azouz Zakrya1ORCID,Honarvar Shakibaei Asli Barmak1ORCID,Khan Muhammad1ORCID

Affiliation:

1. Centre for Life-Cycle Engineering and Management, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

Abstract

Vibration-based structural health monitoring (SHM) is essential for evaluating structural integrity. Traditional methods using contact vibration sensors like accelerometers have limitations in accessibility, coverage, and impact on structural dynamics. Recent digital advancements offer new solutions through high-speed camera-based measurements. This study explores how camera settings (speed and resolution) influence the accuracy of dynamic response measurements for detecting small cracks in damped cantilever beams. Different beam thicknesses affect damping, altering dynamic response parameters such as frequency and amplitude, which are crucial for damage quantification. Experiments were conducted on 3D-printed Acrylonitrile Butadiene Styrene (ABS) cantilever beams with varying crack depth ratios from 0% to 60% of the beam thickness. The study utilised the Canny edge detection technique and Fast Fourier Transform to analyse vibration behaviour captured by cameras at different settings. The results show an optimal set of camera resolutions and frame rates for accurately capturing dynamic responses. Empirical models based on four image resolutions were validated against experimental data, achieving over 98% accuracy for predicting the natural frequency and around 90% for resonance amplitude. The optimal frame rate for measuring natural frequency and amplitude was found to be 2.4 times the beam’s natural frequency. The findings provide a method for damage assessment by establishing a relationship between crack depth, beam thickness, and damping ratio.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3