Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China

Author:

Ren YanqunORCID,Liu JinpingORCID,Shalamzari Masoud Jafari,Arshad ArfanORCID,Liu Suxia,Liu TieORCID,Tao Hui

Abstract

The source region of the Yellow River Basin (SRYRB) is not only sensitive to climate change and the vulnerable region of the ecological environment but also the primary runoff generating region of the Yellow River Basin (YRB). Its changes of drought and wetness profoundly impact water resources security, food production and ecological environment in the middle and downward reaches of YRB. In the context of global warming, based on daily precipitation, maximum and minimum temperature of 12 national meteorological stations around and within SRYRB during 1960–2015, this study obtained standardized precipitation index (SPI) and reconnaissance drought index (RDI) on 1-, 3-, 6- and 12-month scales, and then compared the consistency of SPI and RDI in many aspects. Finally, the temporal and spatial variation characteristics of drought and wetness in the SRYRB during 1960–2015 were analyzed in this study. The results showed that SPI and RDI have high consistency on different time scales (correlation coefficient above 0.92). According to the average distribution and change trend of the RDI, SRYRB presented an overall wetness state on different time scales. We found an increasing trend in wetness since the early 1980s. In terms of wetness events of different magnitudes, the highest frequency for moderate and severe ones was in June (12.7%) and February (5.5%), respectively, and for extreme wetness events, both September and January had the highest frequency (1.8%). Among the four seasons, the change rate of RDI in spring was the largest with a value of 0.38 decade−1, followed by winter (0.36 decade−1) and autumn (0.2 decade−1) and the smallest in summer (0.1 decade−1). There was a greater consistency between RDI values of larger time scales such as annual and vegetation growing seasonal (VGS) scales in SRYRB. There was generally a growing trend in wetness in the VGS time scale. These findings presented in this study can provide data support for drought and wetness management in SRYRB.

Funder

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sci-ences and Natural Resources Research, Chinese Academy of Sciences

K. C. Wong Education Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3