Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation

Author:

Lin Meng-JuORCID,Chou Hui-Min,Chen Rongshun

Abstract

Even when made by brittle materials, awl-shaped serpentine microsprings (ASSMs) were found to have a nonlinear displacement–force relationship similar to springs made by ductile material. It is found that the nonlinear displacement–force relationship is due to the geometry and dimensions of the ASSMs. The geometric effect of the nonlinear force–displacement relationship of ASSMs for in-plane motion was investigated. A theoretical solution was derived to analyze this nonlinearity. By successfully fabricating and measuring an ASSM, the theoretical results agreed well with the experimental results. The results indicated that ASSMs have a nonlinear force–displacement relationship, which is similar to that of hardening springs. The taper angle has a significant effect on the nonlinear displacement of ASSMs. When the taper angle was small, no obvious effect appeared on the nonlinearity of the microsprings with different numbers of turns. When the beam length increased, the critical force for nonlinear deflection decreased.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3