Burial Depth Effect of Crack on the Lcr Wave Acoustoelastic Coefficient for Stress Measurement of Laser Cladding Coating

Author:

Liu BinORCID,Zeng Zhihao,Gu Jiayang,Chen Shujin,He Peng,Fang Jinxiang

Abstract

In this paper, the influence of burial depth of crack on stress measurement of laser cladding coating with the critical refracted longitudinal wave (Lcr wave) was discussed based on the Lcr wave acoustoelastic effect. The regular rectangular slots with different depths that were used to simulate the burial crack in coating was based on the equivalent theory. The experimental system including an ultrasonic wave generator, digital oscilloscope (2.5 GHz sampling rate), and two Lcr wave transducers (2.5 MHz center frequency) was used to collect the Lcr wave under different tensile loads, and the Lcr wave was denoised by using wavelet analysis technology, then the fracture morphology was observed using SEM. The results show that after the denoising by wavelet analysis technology, the signal-to-noise ratio of Lcr wave becomes bigger and the mean square deviation of Lcr wave becomes smaller. When the tensile load is within the turning point load, the difference in time of flight between Lcr wave increases linearly as the tensile load increases, and the deviation of the experimental results becomes obvious as the tensile load increases. When the tensile load is the same, as the burial depth of the slot increases, the nominal Lcr wave acoustoelastic coefficient decreases and tends to be stable gradually. At last, the experimental results are discussed based on the Lcr wave acoustoelastic effect and deformation theory, and it is analyzed that the uneven deformation caused by the interface in coating, anisotropic microstructure, and the burial crack is considered as the main reason.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3