Author:
Marín Franklin,Dahik Carlos,Mosquera Giovanny,Feyen Jan,Cisneros Pedro,Crespo Patricio
Abstract
Andean ecosystems provide important ecosystem services including streamflow regulation and carbon sequestration, services that are controlled by the water retention properties of the soils. Even though these soils have been historically altered by pine afforestation and grazing, little research has been dedicated to the assessment of such impacts at local or regional scales. To partially fill this knowledge gap, we present an evaluation of the impacts of pine plantations and grazing on the soil hydro-physical properties and soil organic matter (SOM) of high montane forests and páramo in southern Ecuador, at elevations varying between 2705 and 3766 m a.s.l. In total, seven study sites were selected and each one was parceled into undisturbed and altered plots with pine plantation and grazing. Soil properties were characterized at two depths, 0–10 and 10–25 cm, and differences in soil parameters between undisturbed and disturbed plots were analyzed versus factors such as ecosystem type, sampling depth, soil type, elevation, and past/present land management. The main soil properties affected by land use change are the saturated hydraulic conductivity (Ksat), the water retention capacity (pF 0 to 2.52), and SOM. The impacts of pine afforestation are dependent on sampling depth, ecosystem type, plantation characteristics, and previous land use, while the impacts of grazing are primarily dependent on sampling depth and land use management (grazing intensity and tilling activities). The site-specific nature of the found relations suggests that extension of findings in response to changes in land use in montane Andean ecosystems is risky; therefore, future evaluations of the impact of land use change on soil parameters should take into consideration that responses are or can be site specific.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献