The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects

Author:

McCaskill George

Abstract

The Hungry Bob fuels reduction project was part of a 12-site National Fire and Fire Surrogate (FFS) network of experiments conducted across the United States from the late 1990s through the early 2000s to determine the regional differences in applying alternative fuel-reduction treatments to forests. The Hungry Bob project focused on restoration treatments applied in low elevation, dry second-growth ponderosa pine (Pinus ponderosa subsp. ponderosa (Douglas ex C. Lawson) and Douglas-fir (Pseudotsuga menziesii subsp. glauca (Beissn.) Franco forests of northeastern Oregon. Treatments included a single entry thin from below in 1998, a late season burn in 2000, a thin (1999) followed by burning (2000), and a no-treatment control. This paper represents results 20 years after treatments and focuses on the treatment effects upon tree diameter growth, crown health, and ladder fuel conditions within the dry eastside stands. The Thin + Burn units produced the best diameter growth in ponderosa pine trees, whereas the Thin units had the best growth for Douglas-fir. The Burn treatment did not improve diameter growth over the Controls. The Thin + Burn treatments also produced trees with the highest tree crown ratios. The Burn unit trees had lower crown ratios compared to the Control trees. The crown reduction (reduction in tree crown ratio since 2004) was largest in the Burn-only units and smallest in the Thin + Burn units. Finally, the heights to the lower tree crowns were highest in the Thin + Burn trees and lowest in the Burn unit trees. Based upon the 20-year responses, the Thin + Burn treatments produced the best conditions for stand growth, while limiting fire stress upon residual tree crowns. It also proved most effective at reducing ladder fuels as represented by higher tree crown heights.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3