Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change

Author:

Jung JaewonORCID,Jung Sungeun,Lee Junhyeong,Lee MyungjinORCID,Kim Hung SooORCID

Abstract

The interest in renewable energy to replace fossil fuel is increasing as the problem caused by climate change has become more severe. In this study, small hydropower (SHP) was evaluated as a resource with high development value because of its high energy density compared to other renewable energy sources. SHP may be an attractive and sustainable power generation environmental perspective because of its potential to be found in small rivers and streams. The power generation potential could be estimated based on the discharge in the river basin. Since the river discharge depends on the climate conditions, the hydropower generation potential changes sensitively according to climate variability. Therefore, it is necessary to analyze the SHP potential in consideration of future climate change. In this study, the future prospect of SHP potential is simulated for the period of 2021 to 2100 considering the climate change in three hydropower plants of Deoksong, Hanseok, and Socheon stations, Korea. The results show that SHP potential for the near future (2021 to 2040) shows a tendency to be increased, and the highest increase is 23.4% at the Deoksong SPH plant. Through the result of future prospect, we have shown that hydroelectric power generation capacity or SHP potential will be increased in the future. Therefore, we believe that it is necessary to revitalize the development of SHP to expand the use of renewable energy. In addition, a methodology presented in this study could be used for the future prospect of the SHP potential.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference95 articles.

1. Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way

2. Small hydro in Europe help meets the CO2 target;Tondi;Int. Water Power Dam Constr.,1999

3. Korea Energy Agency http://www.kemco.or.kr/

4. IEA, World Energy Outlook 2017,2017

5. Power-generation system vulnerability and adaptation to changes in climate and water resources

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3