Microgravity Survey to Detect Voids and Loosening Zones in the Vicinity of the Mine Shaft

Author:

Porzucek SlawomirORCID,Loj Monika

Abstract

In mining and post-mining areas, the assessment of the risks to the surface and its infrastructure from the opening or closed mine is of the utmost importance; particular attention should be paid to mine shafts. The risks include the occurrence of undetected voids or loosening zones in the rock mass. Their detection makes it possible to prevent their impact on a mine shaft and surface infrastructure. Geophysical methods, and in particular, a microgravity method lend themselves for the detection of changes in the distribution of masses (i.e., the density) due to voids and loosening zones. The paper presents the results of surface microgravity surveys in the vicinity of three mine shafts: under construction, working, and a liquidated one. Based on the gravity anomalies, the density distribution of the rock mass for all three cases was recognized. The properties of the anomalies allowed to determine which of the identified decreased density zones may pose a threat to the surface infrastructure or a mine shaft. The microgravity survey made inside the working mining shaft provided information on the density of rocks outside the shaft lining, regardless of the type of lining. No significant decrease of density was found, which means that there are no larger voids outside the shaft lining. Nevertheless, at a depth of 42 m in running sands layer, the decreasing density zone was located, which should be controlled. Additionally, measurements in two vertical profiles gave the possibility of directional tracking of density changes outside shaft lining. Such changes were observed on three boundaries of geological layers, with two of them being on the boundary of gypsum and other rocks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3