A Wind Energy Supplier Bidding Strategy Using Combined EGA-Inspired HPSOIFA Optimizer and Deep Learning Predictor

Author:

Zhang RongquanORCID,Aziz Saddam,Farooq Muhammad Umar,Hasan Kazi NazmulORCID,Mohammed NabilORCID,Ahmad SadiqORCID,Ibadah Nisrine

Abstract

As the integration of large-scale wind energy is increasing into the electricity grids, the role of wind energy suppliers should be investigated as a price-maker as their participation would influence the locational marginal price (LMP) of electricity. The existing bidding strategies for a wind energy supplier faces limitations with respect to the potential cooperation, other competitors’ bidding behavior, network loss, and uncertainty of wind production (WP) and balancing market price (BMP). Hence, to solve these problems, a novel bidding strategy (BS) for a wind power supplier as a price-maker has been proposed in this paper. The new algorithm, called the evolutionary game approach (EGA) inspired hybrid particle swarm optimization and improved firefly algorithm (HPSOIFA), has been proposed to handle the bidding issue. The bidding behavior of power suppliers, including conventional power suppliers, has been encoded as one species to obtain the equilibrium where the EGA can explore dynamically reasonable behavior changes of the opponents. Each species of behavior change has been exploited by the HPSOIFA to improve the optimization solutions. Moreover, a deep learning algorithm, namely deep belief network, has been implemented for improving the accuracy of the forecasting results considering the WP and BMP, and the uncertainty revealed in the WP and BMP has been modeled by quantile regression (QR). Finally, the Shapley value (SV) has been calculated to estimate the benefits of cooperative power suppliers. The presented case studies have verified that the proposed algorithm and the established bidding strategy exhibit higher effectiveness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3