Decentralized Management of Commercial HVAC Systems

Author:

Faddel SamyORCID,Tian Guanyu,Zhou Qun

Abstract

With the growth of commercial building sizes, it is more beneficial to make them “smart” by controlling the schedule of the heating, ventilation, and air conditioning (HVAC) system adaptively. Single-building-based scheduling methods are more focused on individual interests and usually result in overlapped schedules that can cause voltage deviations in their microgrid. This paper proposes a decentralized management framework that is able to minimize the total electricity costs of a commercial microgrid and limit the voltage deviations. The proposed scheme is a two-level optimization where the lower level ensures the thermal comfort inside the buildings while the upper level consider system-wise constraints and costs. The decentralization of the framework is able to maintain the privacy of individual buildings. Multiple data-driven building models are developed and compared. The effect of the building modeling on the overall operation of coordinated buildings is discussed. The proposed framework is validated on a modified IEEE 13-bus system with different connected types of commercial buildings. The results show that coordinated optimization outperforms the commonly used commercial controller and individual optimization of buildings. The results also show that the total costs are greatly affected by the building modeling.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Optimization of Thermoelectric Air-cooling Systems for Vehicles;2024-02-14

2. Matching Mechanisms for Buildings Energy Flexibility Orders in P2P Local Markets;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

3. Adjustable Robust Scheduling of Commercial HVAC under Weather Uncertainty;2022 IEEE Industry Applications Society Annual Meeting (IAS);2022-10-09

4. Modeling and Coordination of Commercial Buildings in Distribution Systems;IEEE Transactions on Industry Applications;2022-03

5. Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications;Sustainability;2021-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3