Towards a Comprehensive and Robust Micromanipulation System with Force-Sensing and VR Capabilities

Author:

Adam GeorgesORCID,Chidambaram Subramanian,Reddy Sai Swarup,Ramani Karthik,Cappelleri David J.ORCID

Abstract

In this modern world, with the increase of complexity of many technologies, especially in the micro and nanoscale, the field of robotic manipulation has tremendously grown. Microrobots and other complex microscale systems are often to laborious to fabricate using standard microfabrication techniques, therefore there is a trend towards fabricating them in parts then assembling them together, mainly using micromanipulation tools. Here, a comprehensive and robust micromanipulation platform is presented, in which four micromanipulators can be used simultaneously to perform complex tasks, providing the user with an intuitive environment. The system utilizes a vision-based force sensor to aid with manipulation tasks and it provides a safe environment for biomanipulation. Lastly, virtual reality (VR) was incorporated into the system, allowing the user to control the probes from a more intuitive standpoint and providing an immersive platform for the future of micromanipulation.

Funder

NSF NRI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3