Event-Based Motion Capture System for Online Multi-Quadrotor Localization and Tracking

Author:

Iaboni Craig,Lobo DeepanORCID,Choi Ji-WonORCID,Abichandani PramodORCID

Abstract

Motion capture systems are crucial in developing multi-quadrotor systems due to their ability to provide fast and accurate ground truth measurements for tracking and control. This paper presents the implementation details and experimental validation of a relatively low-cost motion-capture system for multi-quadrotor motion planning using an event camera. The real-time, multi-quadrotor detection and tracking tasks are performed using a deep learning network You-Only-Look-Once (YOLOv5) and a k-dimensional (k-d) tree, respectively. An optimization-based decentralized motion planning algorithm is implemented to demonstrate the effectiveness of this motion capture system. Extensive experimental evaluations were performed to (1) compare the performance of four deep-learning algorithms for high-speed multi-quadrotor detection on event-based data, (2) study precision, recall, and F1 scores as functions of lighting conditions and camera motion, and (3) investigate the scalability of this system as a function of the number of quadrotors flying in the arena. Comparative analysis of the deep learning algorithms on a consumer-grade GPU demonstrates a 4.8× to 12× sampling/inference rate advantage that YOLOv5 provides over representative one- and two-stage detectors and a 1.14× advantage over YOLOv4. In terms of precision and recall, YOLOv5 performed 15% to 18% and 27% to 41% better than representative state-of-the-art deep learning networks. Graceful detection and tracking performance degradation was observed in the face of progressively darker ambient light conditions. Despite severe camera motion, YOLOv5 precision and recall values of 94% and 98% were achieved, respectively. Finally, experiments involving up to six indoor quadrotors demonstrated the scalability of this approach. This paper also presents the first open-source event camera dataset in the literature, featuring over 10,000 fully annotated images of multiple quadrotors operating in indoor and outdoor environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3