Representation of In-Service Performance for Cable-Stayed Railway–Highway Combined Bridges Based on Train-Induced Response’s Sensing Data and Knowledge

Author:

Zhao Han-WeiORCID,Ding You-LiangORCID,Li Ai-Qun

Abstract

Real-time representation of the current performance of structures is an important task for perceiving potential danger in in-service bridges. Methods driven by the multisource sensing data of structural health monitoring systems are an effective way to achieve this goal. Due to the explicit zero-point of signals, the live load-induced response has an inherent advantage for quantitatively representing the performance of bridges. Taking a long-span cable-stayed railway–highway combined bridge as the case study, this paper presents a representation method of in-service performance. First, the non-stationary sections of train-induced response are automatically extracted by wavelet transform and window with threshold. Then, the data of the feature parameter of each non-stationary section are automatically divided into four cases of train load according to the calculational theory of bridge vibration under train effect and clustering analysis. Finally, the performance indexes for structural deformation and dynamics are determined separately, based on hierarchical clustering and statistical modeling. Fusing the real variability of massive data from monitoring and the knowledge of mechanics of theoretical calculations, accurate and robust indexes of bridge deflection distribution and forced vibration frequency are obtained in real time. The whole process verifies the feasibility of the representation of bridge in-service performance from massive multisource sensing data. The presented method, framework, and analysis results can be used as a reference for the design, operation, and maintenance works of long-span railway bridges.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Key R&D Program of China

Key Research and Development Program of Nanjing Jiangbei New Area

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3