Linking Forest Flammability and Plant Vulnerability to Drought

Author:

Nolan Rachael H.ORCID,Blackman Chris J.,de Dios Víctor RescoORCID,Choat Brendan,Medlyn Belinda E.,Li Ximeng,Bradstock Ross A.,Boer Matthias M.

Abstract

Globally, fire regimes are being altered by changing climatic conditions. New fire regimes have the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Despite the co-occurrence of forest fires with drought, current approaches to modelling flammability largely overlook the large body of research into plant vulnerability to drought. Here, we outline the mechanisms through which plant responses to drought may affect forest flammability, specifically fuel moisture and the ratio of dead to live fuels. We present a framework for modelling live fuel moisture content (moisture content of foliage and twigs) from soil water content and plant traits, including rooting patterns and leaf traits such as the turgor loss point, osmotic potential, elasticity and leaf mass per area. We also present evidence that physiological drought stress may contribute to previously observed fuel moisture thresholds in south-eastern Australia. Of particular relevance is leaf cavitation and subsequent shedding, which transforms live fuels into dead fuels, which are drier, and thus easier to ignite. We suggest that capitalising on drought research to inform wildfire research presents a major opportunity to develop new insights into wildfires, and new predictive models of seasonal fuel dynamics.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3