A Fault-Diagnosis Method for Railway Turnout Systems Based on Improved Autoencoder and Data Augmentation

Author:

Li Mengyang,Hei XinhongORCID,Ji WenjiangORCID,Zhu LeiORCID,Wang YichuanORCID,Qiu Yuan

Abstract

In recent years, with the rapid increase in coverage and lines, security maintenance has become one of the top concerns with regard to railway transportation in China. As the key transportation infrastructure, the railway turnout system (RTS) plays a vital role in transportation, which will cause incalculable losses when accidents occur. The traditional fault-diagnosis and maintenance methods of the RTS are no longer applicable to the growing amount of data, so intelligent fault diagnosis has become a research hotspot. However, the key challenge of RTS intelligent fault diagnosis is to effectively extract the deep features in the signal and accurately identify failure modes in the face of unbalanced datasets. To solve the above two problems, this paper focuses on unbalanced data and proposes a fault-diagnosis method based on an improved autoencoder and data augmentation, which realizes deep feature extraction and fault identification of unbalanced data. An improved autoencoder is proposed to smooth the noise and extract the deep features to overcome the noise fluctuation caused by the physical characteristics of the data. Then, synthetic minority oversampling technology (SMOTE) is utilized to effectively expand the fault types and solve the problem of unbalanced datasets. Furthermore, the health state is identified by the Softmax regression model that is trained with the balanced characteristics data, which improves the diagnosis precision and generalization ability. Finally, different experiments are conducted on a real dataset based on a railway station in China, and the average diagnostic accuracy reaches 99.13% superior to other methods, which indicates the effectiveness and feasibility of the proposed method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Program of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3