Rapid Localization and Mapping Method Based on Adaptive Particle Filters

Author:

Charroud AnasORCID,El Moutaouakil KarimORCID,Yahyaouy Ali,Onyekpe Uche,Palade VasileORCID,Huda Md Nazmul

Abstract

With the development of autonomous vehicles, localization and mapping technologies have become crucial to equip the vehicle with the appropriate knowledge for its operation. In this paper, we extend our previous work by prepossessing a localization and mapping architecture for autonomous vehicles that do not rely on GPS, particularly in environments such as tunnels, under bridges, urban canyons, and dense tree canopies. The proposed approach is of two parts. Firstly, a K-means algorithm is employed to extract features from LiDAR scenes to create a local map of each scan. Then, we concatenate the local maps to create a global map of the environment and facilitate data association between frames. Secondly, the main localization task is performed by an adaptive particle filter that works in four steps: (a) generation of particles around an initial state (provided by the GPS); (b) updating the particle positions by providing the motion (translation and rotation) of the vehicle using an inertial measurement device; (c) selection of the best candidate particles by observing at each timestamp the match rate (also called particle weight) of the local map (with the real-time distances to the objects) and the distances of the particles to the corresponding chunks of the global map; (d) averaging the selected particles to derive the estimated position, and, finally, using a resampling method on the particles to ensure the reliability of the position estimation. The performance of the newly proposed technique is investigated on different sequences of the Kitti and Pandaset raw data with different environmental setups, weather conditions, and seasonal changes. The obtained results validate the performance of the proposed approach in terms of speed and representativeness of the feature extraction for real-time localization in comparison with other state-of-the-art methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3