Hydrochemical Characteristics, Controlling Factors, and Solute Sources of Streamflow and Groundwater in the Hei River Catchment, China

Author:

Kou ,Li ,Hua ,Li

Abstract

Water scarcity in arid regions is exacerbated by water quality degradation from anthropogenic contamination. In water-scarce regions, it is crucial to identify hydrochemical characteristics and pollution sources for effective water resource management. In this study, the Hei River—located in the Loess Plateau of China, which is an arid region with substantial anthropogenic-induced environmental changes—was selected as the study area to investigate these issues. The major ions of 242 streamflow and groundwater samples were measured during the 2014 and 2015 dry and flood seasons. Using a Piper diagram, a fuzzy membership function, a Gibbs diagram, and a forward model, the hydrochemical facies and water quality of streamflow and groundwater were investigated, and the main river solute sources and relative contributions were determined using quantitative and qualitative methods. The total dissolved solids were 279.6 ± 127.8 mg·L−1 for streamflow and 354.0 ± 157.4 mg·L−1 for groundwater, indicating low salinity water. However, the hydrochemical characteristics varied with season and location. Qualitatively, the atmospheric inputs, human activities, and rock weathering all contributed solutes to the waters but with varying contributions. The following are the mean contributions of analyzed solute source: silicate weathering (45.1 ± 1.1%) > carbonate weathering (34.1 ± 1.6%) > evaporite dissolution (13.7 ± 2.4%) > atmospheric input (5.4 ± 0.1%) > anthropogenic input (1.7 ± 0.1%). In general, water quality was satisfactory, as the majority of samples conformed to drinking water standards. The samples had good water quality because the river solutes were not heavily affected by anthropogenic activities and were primarily controlled by rock weathering. However, localized areas of high anthropogenic impact were identified. Such locations should be prioritized for pollution control and water resource management.

Funder

State Key Joint Laboratory of Environmental Simulation and Pollution Control

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3