Modeling and Dynamic-Simulating the Water Distribution of a Fixed Spray-Plate Sprinkler on a Lateral-Move Sprinkler Irrigation System

Author:

Zhang Yisheng,Guo Jinjun,Sun Bin,Fang Hongyuan,Zhu Delan,Wang Huiliang

Abstract

Uniformity of water distribution plays an important role in evaluating irrigation quality. As necessities in calculating irrigation uniformity during designing a lateral-move sprinkler irrigation system (LMSIS), the water distribution patterns of individual sprinkler in motion are crucial. Considering the limitation of the experiment platform, dynamic water distribution of an isolated sprinkler is difficult to measure, especially for a fixed spray plate sprinkler (FSPS) which LMSIS has been widely equipped with in China, therefore developing a model to simulate dynamic water distribution of a moving sprinkler is necessary. The objective of this study was to develop and validate the theoretical basis for calculating water distribution characteristics of a single FSPS in translational motion applying a superposition method, and provide an optimized operation management of LMSIS. The theoretical model’s validity was verified in an indoor experiment using a Nelson D3000 FSPS in motion with 36 grooves and blue-plate spray heads. The software was programmed using the Eclipse Platform and the software was capable of simulating water distribution pattern and Christiansen uniformity coefficient (Cu). The results indicated that the water distribution simulated by the software presents three peaks of maximum application under varying conditions, and the value of water application peaks decreased as working pressure and/or mounting height increased. Conversely, the wetted diameter increased as working pressure and/or mounting height increased. Working pressure, mounting height, and sprinkler spacing each had a significant effect on the Cu. The Cu increased as working pressure and/or mounting height increased but decreased as sprinkler spacing increased. As a consequence, the model can be used to predict the relative water distribution pattern; and the Cu can be calculated with the simulated data, thus providing a tool for designing a new LMSIS.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The importance of water depth distribution maps in the sprinkler irrigation system performance assessment;Water Supply;2023-10-04

2. Effect of the arrangement of two nozzles on morphology, velocity, and particle size distribution of artificial snow-making spray field;Physics of Fluids;2023-05-01

3. Modeling of Structural and Technological Parameters of Sprinkler Nozzles;XV International Scientific Conference “INTERAGROMASH 2022”;2023

4. Modeling of structural and technological parameters of sprinkler nozzles;INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “CURRENT ISSUES OF BIOLOGY, BREEDING, TECHNOLOGY AND PROCESSING OF AGRICULTURAL CROPS” (CIBTA2022) (To the 110th anniversary of V.S. Pustovoit All-Russian Research Institute of Oil Crops);2023

5. Calibration and Evaluation of Aquacrop for Maize (Zea Mays L.) under Different Irrigation and Cultivation Methods;Journal of Ecological Engineering;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3