Adsorption and Visible Photocatalytic Synergistic Removal of a Cationic Dye with the Composite Material BiVO4/MgAl–LDHs

Author:

Wang Yuquan12,Xu Yidong2ORCID,Cai Xinjie12,Wu Jinting2

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. College of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China

Abstract

Adsorption and photocatalysis are effective in removing organic pollutants from wastewater. This study is based on the memory effects of MgAl–layered double hydroxides (MgAl–LDHs) after high-temperature calcination. By introducing bismuth vanadate (BiVO4) during the reformation of the layered structure via contact with water, a composite material BiVO4/MgAl–LDHs with enhanced adsorption and visible light catalytic performance was synthesized. The effects of the calcination temperature, ratio, initial methylene blue (MB) concentration, and catalyst dosage on the adsorption and photocatalytic performance were investigated. The BiVO4/MgAl–LDHs showed better photocatalytic performance than the pure BiVO4 and MgAl–LDHs. Under the optimal conditions, the proportion of MB adsorbed in 20 min was 66.1%, and the percentage of MB degraded during 100 min of photolysis was 92.4%. The composite photocatalyst showed good chemical stability and cyclability, and the adsorption-degradation rate was 86% after four cycles. Analyses of the adsorption and photocatalytic mechanisms for the composite material showed that synergistic adsorption and visible light photocatalysis contributed to the excellent catalytic performance of the BiVO4/MgAl–LDHs. A highly adsorbent photocatalytic composite material exhibiting outstanding performance was prepared via a simple, cost-effective, and environmentally friendly method, providing reference information for the removal of organic pollutants from liquids.

Funder

Natural Science Foundation of Zhejiang Province

Science and Technology Project of Zhejiang Provincial Department of Transport

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3