Effects of Ultra-Low Temperatures on the Mechanical Properties and Microstructure Evolution of a Ni-Co-Based Superalloy Thin Sheet during Micro-Tensile Deformation

Author:

Zhu Qiang12,Wang Min1,Sun Yuying1,Zhang Linfu1,Qin Heyong3,Zhang Peng12

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

2. Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China

3. High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081, China

Abstract

With the development of product miniaturization in aerospace, the nuclear industry, and other fields, Ni-Co-based superalloys with excellent overall properties have become key materials for micro components in these fields. In the microforming field, size effects significantly impact the mechanical properties and plastic deformation behavior of materials. In this paper, micro-tensile experiments at room temperature and an ultra-low temperature were carried out to study the effects of initial microstructure and deformation temperature on the deformation behavior of Ni-Co-based superalloy thin sheets. The results show that as the ratio of specimen thickness to grain size (t/d) decreased from 8.6 to 2.4, the tensile strength σb decreased from 1221 MPa to 1090 MPa, the yield strength σs decreased from 793 MPa to 622 MPa, and the elongation decreased from 0.26 to 0.21 at room temperature. When t/d decreased from 8.6 to 2.4, σb decreased from 1458 MPa to 1132 MPa, σs decreased from 917 MPa to 730 MPa, and the elongation decreased from 0.31 to 0.28 at ultra-low temperatures. When t/d decreased from 8.6 to 2.4, the surface roughness of the specimen increased from 0.769 to 0.890 at room temperature and increased from 0.648 to 0.809 at ultra-low temperatures. During the microplastic deformation process of Ni-Co-based superalloy thin sheets, the coupled effects of surface roughening caused by free surface grains and hindered dislocation movement induced by grain boundary resulted in strain localization, which caused fracture failure of Ni-Co-based superalloy thin sheets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3