Understanding the Impact of Active-to-Passive Area Ratio on Deformation in One-Dimensional Dielectric Elastomer Actuators with Uniaxial Strain State

Author:

Liebscher Hans1ORCID,Koenigsdorff Markus1ORCID,Endesfelder Anett23,Mersch Johannes14ORCID,Zimmermann Martina23ORCID,Gerlach Gerald1ORCID

Affiliation:

1. Institute of Solid-State Electronics, Faculty of Electrical and Computer Engineering, TUD Dresden University of Technology, Mommsenstraße 15, 01069 Dresden, Germany

2. Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstraße 28, 01277 Dresden, Germany

3. Institute of Materials Science, Faculty of Mechanical Science and Engineering, TUD Dresden University of Technology, Helmholtzstraße 7, 01069 Dresden, Germany

4. Institute of Measurement Technology, Department of Mechatronics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Abstract

There is increasing interest in the use of novel elastomers with inherent or modified advanced dielectric and mechanical properties, as components of dielectric elastomer actuators (DEA). This requires corresponding techniques to assess their electro-mechanical performance. A common way to test dielectric materials is the fabrication of actuators with pre-stretch fixed by a stiff frame. This results in the problem that the electrode size has an influence on the achievable actuator displacement and strain, which is detrimental to the comparability of experiments. This paper presents an in-depth study of the active-to-passive ratio with the aim of investigating the influence of the coverage ratio on uniaxial actuator displacement and strain. To model the effect, a simple lumped-parameter model is proposed. The model shows that the coverage ratio for maximal displacement is 50%. To validate the model results, experiments are carried out. For this, a rectangular, fiber-reinforced DEA is used to assess the relation of the coverage ratio and deformation. Due to the stiffness of the fibers, highly anisotropic mechanical properties are achieved, leading to the uniaxial strain behavior of the actuator, which allows the validation of the one-dimensional model. To consider the influence of the simplifications in the lumped-parameter model, the results are compared to a hyperelastic model. In summary, it is shown that the ratio of the active-to-passive area has a significant influence on the actuator deformation. Both the model and experiments confirm that an active-to-passive ratio of 50% is particularly advantageous in most cases.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3