A Review: Synthesis and Applications of Titanium Sub-Oxides

Author:

Wu Xiaoping1ORCID,Wang Haibo1,Wang Yu2

Affiliation:

1. State Key Laboratory of V and Ti Resources Comprehensive Utilization, Ansteel Research Institute of Vanadium & Titanium (Iron & Steele), Panzhihua 617000, China

2. The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China

Abstract

Magnéli phase titanium oxides, also called titanium sub-oxides (TinO2n−1, 4 < n < 9), are a series of electrically conducting ceramic materials. The synthesis and applications of these materials have recently attracted tremendous attention because of their applications in a number of existing and emerging areas. Titanium sub-oxides are generally synthesized through the reduction of titanium dioxide using hydrogen, carbon, metals or metal hydrides as reduction agents. More recently, the synthesis of nanostructured titanium sub-oxides has been making progress through optimizing thermal reduction processes or using new titanium-containing precursors. Titanium sub-oxides have attractive properties such as electrical conductivity, corrosion resistance and optical properties. Titanium sub-oxides have played important roles in a number of areas such as conducting materials, fuel cells and organic degradation. Titanium sub-oxides also show promising applications in batteries, solar energy, coatings and electronic and optoelectronic devices. Titanium sub-oxides are expected to become more important materials in the future. In this review, the recent progress in the synthesis methods and applications of titanium sub-oxides in the existing and emerging areas are reviewed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3