The Influence of Different Curing Environments on the Mechanical Properties and Reinforcement Mechanism of Dredger Fill Stabilized with Cement and Polypropylene Fibers

Author:

Wang Ying1ORCID,Wang Chaojie1ORCID,Hu Zhenhua2ORCID,Sun Rong2

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

An effective method widely used in geotechnical engineering to solve the shrinkage and cracking issues in cement-stabilized soil (CS) is evenly mixing randomly distributed fibers into it. Dredger fills stabilized with cement and polypropylene fibers (PFCSs) are exposed to rainwater immersion and seawater erosion in coastal areas, influencing their mechanical performance and durability. In this study, direct shear and consolidation compression tests were conducted to investigate the influence of different curing environments on the mechanical properties and compressive behavior of PFCSs. Dominance and regression analyses were used to study the impact of each factor under different curing regimes. The reinforcement mechanism of different curing environments was also explored using scanning electron microscopy (SEM) imaging. The results show that the cohesion and elastic modulus of the specimens cured in seawater were reduced compared with those cured in freshwater and standard curing environments. The best fiber content for the strength and compressive modulus of PFCSs was determined to be 0.9% of the mass of dredged fill. The results of value-added contributions and the relative importance of each factor in different curing environments show that the overall average contribution of cement content in the seawater curing environment is reduced by 6.79% compared to the freshwater environment. Multiple linear regression models were developed, effectively describing the quantitative relationships of different properties under different curing conditions. Further, the shear strength was improved by the coupling effect of soil particles, a C-S-H gel, and polypropylene fibers in the PFCSs. However, the shear strength of the PFCSs was reduced due to the structural damage of the specimens in the freshwater and seawater curing environments.

Funder

Shandong Province Natural Science Foundation

Youth Innovation Technology Project of Higher School in Shandong Province

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3