Arsenic Removal and Iron Recovery from Arsenic-Bearing Iron Ores by Calcification-Magnetic Roasting and Magnetic Separation Process

Author:

Dai Mengbo1ORCID,Zhou Yongcheng1ORCID,Xiao Qingfei23,Lv Jinfang23,Huang Lingyun23,Xie Xian23,Hu Yiming1,Tong Xiong23,Chun Tiejun1ORCID

Affiliation:

1. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China

2. Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

3. Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming 650093, China

Abstract

Extracting iron while minimizing the health and environmental risks associated with arsenic contamination necessitates the removal of arsenic from arsenic-bearing iron ores to ensure a safe and sustainable supply of this metal for industries. The beneficiation of iron minerals and arsenic-bearing minerals from arsenic-bearing iron ores with a calcification-magnetizing roasting and low-intensity magnetic separation (CMR-LMS) process is investigated in this work. The results show that the process is successful in extracting iron minerals and eliminating arsenic-containing minerals. The roasting involves two key steps: calcification and magnetizing, which change hematite and goethite into magnetite and arsenic-bearing minerals into calcium arsenates. The process’s separation efficiency of the CMR-LMS is closely linked to the parameters such as roasting temperature, roasting time, coke, alkalinity, and the liberation of gangue minerals from iron minerals. Through grinding and secondary magnetic separation, the iron minerals and gangue components, as well as arsenic, in roasted sand can be further separated. The optimum procedure results in a high-grade iron concentrate with an iron assay of 65.65%, an Fe recovery rate of 80.07%, and an arsenic content of 0.085%, while achieving a 93.29% As removal rate from the original ore that has 45.32% Fe and 0.70% As.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3