An Algorithm to Retrieve Range Ocean Current Speed under Tropical Cyclone Conditions from Sentinel-1 Synthetic Aperture Radar Measurements Based on XGBoost

Author:

Zhou Yuhang1,Shao Weizeng1ORCID,Nunziata Ferdinando2,Wang Weili3,Li Cheng4

Affiliation:

1. College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201308, China

2. Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, 80133 Napoli, Italy

3. Hainan Observation and Research Station of Ecological Environment and Fishery Resource in Yazhou Bay, Hainan Institute of Zhejiang University, Sanya 572025, China

4. National Marine Data and Information Service, Tianjin 300171, China

Abstract

In this study, a novel algorithm to retrieve the current speed along the range direction under extreme sea states is developed from C-band synthetic aperture radar imagery. To this aim, a Sentinel-1 (S-1) dual-polarized synthetic aperture radar (SAR) dataset consisting of 2300 images is collected during 200 tropical cyclones (TCs). The dataset is complemented with collocated wave simulations from the Wavewatch-III (WW3) model and reanalysis currents from the HYbrid Coordinate Ocean Model (HYCOM). The corresponding TC winds are officially released by IFRMER, while the Stokes drift following the wave propagation direction is estimated from the waves simulated by WW3. In this study, first the dependence of wind, Stokes drift, and range current on the Doppler centroid anomaly is investigated, and then the extreme gradient boosting (XGBoost) machine learning model is trained on 87% of the S-1 dataset for range current retrieval purposes. The rest of the dataset is used for testing the retrieval algorithm, showing a root mean square error (RMSE) and a correlation coefficient (r) of 0.11 m/s and 0.97, respectively, with the HYCOM outputs. A validation against measurements collected from two high-frequency (HF) phased-array radars is also performed, resulting in an RMSE and r of 0.12 m/s and 0.75, respectively. Those validation results are better than the 0.22 m/s RMSE and 0.28 r achieved by the empirical CDOP model. Hence, the experimental results confirm the soundness of the XGBoost, exhibiting a certain improvement over the empirical model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3