UMMFF: Unsupervised Multimodal Multilevel Feature Fusion Network for Hyperspectral Image Super-Resolution

Author:

Jiang Zhongmin1ORCID,Chen Mengyao1ORCID,Wang Wenju1

Affiliation:

1. College of Publishing, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Due to the inadequacy in utilizing complementary information from different modalities and the biased estimation of degraded parameters, the unsupervised hyperspectral super-resolution algorithm suffers from low precision and limited applicability. To address this issue, this paper proposes an approach for hyperspectral image super-resolution, namely, the Unsupervised Multimodal Multilevel Feature Fusion network (UMMFF). The proposed approach employs a gated cross-retention module to learn shared patterns among different modalities. This module effectively eliminates the intermodal differences while preserving spatial–spectral correlations, thereby facilitating information interaction. A multilevel spatial–channel attention and parallel fusion decoder are constructed to extract features at three levels (low, medium, and high), enriching the information of the multimodal images. Additionally, an independent prior-based implicit neural representation blind estimation network is designed to accurately estimate the degraded parameters. The utilization of UMMFF on the “Washington DC”, Salinas, and Botswana datasets exhibited a superior performance compared to existing state-of-the-art methods in terms of primary performance metrics such as PSNR and ERGAS, and the PSNR values improved by 18.03%, 8.55%, and 5.70%, respectively, while the ERGAS values decreased by 50.00%, 75.39%, and 53.27%, respectively. The experimental results indicate that UMMFF demonstrates excellent algorithm adaptability, resulting in high-precision reconstruction outcomes.

Funder

Key Lab of Intelligent and Green Flexographic Printing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3