An RSSI-Based Low-Power Vehicle-Approach Detection Technique to Alert a Pedestrian

Author:

Watanabe YoshitoORCID,Shoji Yozo

Abstract

Information about an approaching vehicle is helpful for pedestrians to avoid traffic accidents while most of the past studies related to collision avoidance systems have focused on alerting drivers and controlling vehicles. This paper proposes a technique to detect an approaching vehicle aiming at alerting a pedestrian by observing the variation of the received signal strength indicator (RSSI) of the repeatedly radiated beacons from a vehicle, called the alert beacons. A linear regression algorithm is first applied to RSSI samples. The decision about whether a vehicle is approaching or not is made by the Student’s t-test for the linear regression coefficient. A passive method, where the pedestrian’s device behaves only as a receiver, is first described. The neighbor-discovery-based (ND-based) method, in which the pedestrian’s device repeatedly broadcasts advertising beacons and the moving vehicle in the vicinity returns the alert beacon when it receives the advertising beacon, is then proposed to improve the detection performance as well as reduce the device’s energy consumption. The theoretical detection error rate under Rayleigh fading is derived. It is revealed that the proposed ND-based method achieves a lower detection error rate when compared with the passive method under the same delay.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

1. White Paper on Police 2017 Special Feature: Progress and Future Prospects Regarding Traffic Safety Measures—National Police Agencyhttps://www.npa.go.jp/hakusyo/h29/english/Contents_WHITE_PAPER_on_POLICE2017.htm

2. White Paper on Traffic Safety in Japan 2017—Cabinet Office Home Pagehttps://www8.cao.go.jp/koutu/taisaku/h29kou_haku/english/wp2017-pdf.html

3. RSSI-Based Attention Target Approach Detection for a Vehicle Reminder System with Beaconing Devices

4. Survey of Pedestrian Detection for Advanced Driver Assistance Systems

5. Pedestrian Protection Systems: Issues, Survey, and Challenges

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3