Fundamental Studies of SHMP in Reducing Negative Effects of Divalent Ions on Molybdenite Flotation

Author:

Li Wanqing,Li YubiaoORCID,Wei Zhenlun,Xiao Qing,Song Shaoxian

Abstract

Seawater has been considered as an alternative to freshwater for flotation. However, many ions in seawater were reported to depress molybdenite (MoS2), with the depressing mechanisms being insufficiently understood. In this study, the influence of divalent ions (e.g., Ca2+ and Mg2+) and dispersant on MoS2 flotation was systematically investigated. It was found that the detrimental effects of Ca2+ and Mg2+ on the natural flotability of MoS2 were mainly due to the attachment of formed CaMoO4 precipitates and Mg(OH)2 colloids onto MoS2 surface. However, the addition of sodium hexametaphosphate (SHMP) reduced the negative effects. Various measurements, including contact angle, zeta potential, fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM), were conducted to understand the influencing mechanisms of divalent ions and the beneficial effects of SHMP on MoS2 flotation. In addition, the Extended Derjguin–Landau–Verwey–Overbeek (EDLVO) theory was applied to investigate the total interaction energy between MoS2 particles and formed colloids, revealing that the reduced attraction force between MoS2 and Mg(OH)2 colloids in the presence of SHMP primarily resulted in the increased MoS2 recovery. In addition, SHMP combined with Mg2+ and Ca2+ to form dissolvable complexes, thereby reducing insoluble Mg2+ and Ca2+ compounds or precipitation. Thus, this study demonstrated for the first time two influencing mechanisms of SHMP in improving MoS2 recovery in the presence of Ca2+ and Mg2+.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3