A Study on the Application of Machine and Deep Learning Using the Impact Response Test to Detect Defects on the Piston Rod and Steering Rack of Automobiles

Author:

Yoon Young-GeunORCID,Woo Ji-Hoon,Oh Tae-KeunORCID

Abstract

The main parts of automobiles are the piston rod of the shock absorber and the steering rack of the steering gear, and their quality control is critical in the product process. In the process line, these products are normally inspected through visual inspection, sampling, and simple tensile tests; however, if there is a problem or abnormality, it is difficult to identify the type and location of the defect. Usually, these defects are likely to cause surface cracks during processing, which in turn accelerate the deterioration of the shock absorber and steering, causing serious problems in automobiles. As a result, the purpose of this study was to present, among non-destructive methods, a shock response test method and an analysis method that can efficiently and accurately determine the defects of the piston rod and steering rack. A test method and excitation frequency range that can measure major changes according to the location and degree of defects were proposed. A defect discrimination model was constructed using machine and deep learning through feature derivation in the time and frequency domains for the collected data. The analysis revealed that it was possible to effectively distinguish the characteristics according to the location as well as the presence or absence of defects in the frequency domain rather than the time domain. The results indicate that it will be possible to quickly and accurately check the presence or absence of defects in the shock absorber and steering in the automobile manufacturing process line in the future. It is expected that this will play an important role as a key factor in building a smart factory.

Funder

Collabo R&D between Industry, Academy, and Research Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3