Application of Virtual Reality for Learning the Material Properties of Shape Memory Alloys

Author:

Tarng WernhuarORCID,Chen Chia-Jung,Lee Chi-Young,Lin Chih-Ming,Lin Yu-Jun

Abstract

A shape memory alloy (SMA) is an alloy which can eliminate deformation at lower temperatures and restore its original shape upon heating. SMAs have been receiving considerable attention in the research field of materials science, and their applications include robotics, automotive, aerospace, and biomedical industries. Observing the SMA’s shaping and restoration processes is important for understanding its working principles and applications. However, the transformation of its crystal structure with temperature can only be seen using special equipment, such as a transmission electron microscope (TEM), which is an expensive apparatus and the operation requires professional skills. In this study, a teaching module is designed using virtual reality (VR) technology and research results of an SMA to show its shape memory properties, shaping and restoration processes, as well as the real-life applications in an immersive and interactive way. A teaching experiment has been conducted to analyze students’ learning effectiveness using the teaching module (the experimental group) compared with that of using real SMA materials as the teaching aids (the control group). Two classes of students in the Department of Materials Science (one as the experimental group and the other as the control group) were selected as the samples by convenience sampling from a university in North Taiwan. The experimental group contained 52 students and the control group contained 70 students. A nonequivalent pretest-posttest design was adopted to explore whether the two groups had a significant difference in learning effectiveness. The experimental results reveal that the teaching module can improve the learning effectiveness significantly (p = 0.001), and the questionnaire results also show that a majority of the students had positive attitudes about the teaching module. They believed that it could increase their learning motivation and help them understand the properties and applications of the SMA.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3