Study of Implantation Defects in CVD Graphene by Optical and Electrical Methods

Author:

Gawlik Grzegorz,Ciepielewski Paweł,Baranowski Jacek

Abstract

A Chemical Vapor Deposition graphene monolayer grown on 6H–SiC (0001) substrates was used for implantation experiments. The graphene samples were irradiated by He+ and N+ ions. The Raman spectra and electrical transport parameters were measured as a function of increasing implantation fluence. The defect concentration was determined from intensity ratio of the Raman D and G peaks, while the carrier’s concentration was determined from the relations between G and 2D Raman modes energies. It was found that the number of defects generated by one ion is 0.0025 and 0.045 and the mean defect radius about 1.5 and 1.34 nm for He+ and N+, respectively. Hole concentration and mobility were determined from van der Pauw measurements. It was found that mobility decreases nearly by three orders of magnitude with increase of defect concentration. The inverse of mobility versus defect concentration is a linear function, which indicates that the main scattering mechanism is related to defects generated by ion implantation. The slope of inverse mobility versus defect concentration provides the value of defect radius responsible for scattering carriers at about 0.75 nm. This estimated defect radius indicates that the scattering centres most likely consist of reconstructed divacancies or larger vacancy complexes.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3