Abstract
Water storage tanks in cities are usually large and are occasionally affected by earthquakes. A sudden earthquake can cause pressure pulses that damage water containers severely. In this study, the sloshing motion in a high filling level tank caused by seismic excitation is investigated by the numerical method in a 2D model. Two well-studied strong earthquakes are used to analyze the broadband frequency nonlinear displacement of the tank both in the longitudinal and vertical directions. Based on careful experimental verification, the free surface motion and the elevations at the side wall are captured, and the sloshing pressure response is examined. The results show that the 2D section of the cylindrical tank can be used to estimate the maximum response of the 3D sloshing, and the water motions under the seismic excitations are consistent with the modal characteristics of the sloshing. The time histories response of the water motion reflected that the sloshing response is hysteretic compared with the seismic excitation. The anti-seismic ability of the damping baffle shows that its effect on sloshing pressure suppression is limited, and further study on the seismic design of water tanks in earthquake-prone regions is needed.
Funder
Natural Science Foundation of Zhejiang Province
Natural Science Foundation of Ningbo
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献