Development of a Machine-Learning Model for Prediction of Extubation Failure in Patients with Difficult Airways after General Anesthesia of Head, Neck, and Maxillofacial Surgeries

Author:

Huang Huimin1,Wang Jiayi1,Zhu Ying1,Liu Jinxing1,Zhang Ling1,Shi Wei1,Hu Wenyue1,Ding Yi1,Zhou Ren1,Jiang Hong1

Affiliation:

1. Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China

Abstract

(1) Background: Extubation failure after general anesthesia is significantly associated with morbidity and mortality. The risk of a difficult airway after the general anesthesia of head, neck, and maxillofacial surgeries is significantly higher than that after general surgery, increasing the incidence of extubation failure. This study aimed to develop a multivariable prediction model based on a supervised machine-learning algorithm to predict extubation failure in adult patients after head, neck, and maxillofacial surgeries. (2) Methods: A single-center retrospective study was conducted in adult patients who underwent head, neck, and maxillofacial general anesthesia between July 2015 and July 2022 at the Shanghai Ninth People’s Hospital. The primary outcome was extubation failure after general anesthesia. The dataset was divided into training (70%) and final test sets (30%). A five-fold cross-validation was conducted in the training set to reduce bias caused by the randomly divided dataset. Clinical data related to extubation failure were collected and a stepwise logistic regression was performed to screen out the key features. Six machine-learning methods were introduced for modeling, including random forest (RF), k-nearest neighbor (KNN), logistic regression (LOG), support vector machine (SVM), extreme gradient boosting (XGB), and optical gradient boosting machine (GBM). The best performance model in the first cross-validation dataset was further optimized and the final performance was assessed using the final test set. (3) Results: In total, 89,279 patients over seven years were reviewed. Extubation failure occurred in 77 patients. Next, 186 patients with a successful extubation were screened as the control group according to the surgery type for patients with extubation failure. Based on the stepwise regression, seven variables were screened for subsequent analysis. After training, SVM and LOG models showed better prediction ability. In the k-fold dataset, the area under the curve using SVM and LOG were 0.74 (95% confidence interval, 0.55–0.93) and 0.71 (95% confidence interval, 0.59–0.82), respectively, in the k-fold dataset. (4) Conclusion: Applying our machine-learning model to predict extubation failure after general anesthesia in clinical practice might help to reduce morbidity and mortality of patients with difficult airways after head, neck, and maxillofacial surgeries.

Funder

Shanghai Hospital Development Center Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3